无人驾驶汽车其实可以视为是一种机器人。从原理上来说,不过是传感器感知路况和周边情况,然后传输到CPU,CPU根据人工智能对情况做判断,然后通知电传系统,电传系统根据信号操控机械装置,最后机械装置操控车辆做各种动作。
在这个过程中,电传机械控制这方面基本已经完善,因为过去的20年,汽车行业的进步主要就在这方面。如今大部分汽车都是电传控制了,你的刹车、油门、换挡、甚至方向都是一组电子信号,你操作的动作被解读处理,然后传给机械系统,过去哪种直接机械对机械的操控只在极少数工具车上还能看到。无人驾驶无非是把这些信号脱离人的控制交由电脑处理,并不需要费太大周折。
而技术的难点就在前两步,怎么用传感器准确的感知周围的信息?人工智能如何做判断?
从技术路线上来说,感知周围情况有多种模式,谷歌选择了激光传感器,激光传感器对距离的判断非常准确,但是价格昂贵,恶劣天气下实用性受限。目前,谷歌无人驾驶汽车的成本高的吓人,主要就是激光传感器的原因。
比较廉价是采用光学摄像头,目前奔驰S级的魔毯技术就是利用摄像头作为信息采集源来控制空气悬挂,但是光学摄像头用于无人驾驶的话,对图像识别的人工智能会要求很高,对距离速度的判断也会很麻烦。
目前,汽车上已经出现的辅助驾驶功能,一般采用的雷达,这个比较便宜,但是雷达的探测能力相当有限,车载雷达的发射功率也探测不了多远,还怕物体阻挡,用到无人驾驶汽车上有多少实用性也值得怀疑。
从目前来看,最靠谱的还是谷歌的激光传感器路线。
人工智能方面的考验程度更高。其实高速公路上的无人驾驶并不太困难。谷歌现在没有问题,奔驰、奥迪也没有问题,VOLVO没有问题,甚至中国搞的无人驾驶高速也跑了286公里不出问题。这是以为高速路的情况现对简单,对人工智能要求的算法不是很苛刻。
在市内驾驶就完全是两码事了。
谷歌无人驾驶汽车项目主管厄姆森说,“在市区里行驶一英里路程要远比在高速公路上更为复杂,因为前者在一个小的区域中会因为规则的不同存在数百种不同的路面情况。我们花了大量时间改进了我们的软件,因此它现在可以实时的区别上百个不同物体——如行人、公共汽车、由协管员手握的停车标志,或者是骑自行车者给出的要通过马路的手势信号等。”
在人工智能方面,其他厂商距离谷歌还差得远,谷歌的人工智能水平已经接近实用了,其他厂商还在表演阶段。
|